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The recently introduced mixed MC-SD method is a fundamentally new procedure which 
essentially eliminates the distinction between Monte Carlo and dynamics. Unlike other meth- 
ods which utilize forces, Brownian motion or dynamical steps to generate new trial configura- 
tions in a Monte Carlo search, mixed MC-SD does stochastic dynamics on the cartesian space 
of a molecule and Monte Carlo on the torsion space of the molecule simultaneously. After 
each dynamical step, a random deformation of a rotatable torsion is performed and accepted or 
rejected according to the Metropolis criteria. The next dynamical step is performed from the 
most recent configuration and the velocities from the previous dynamical step. The smooth 
merging of Monte Carlo and dynamics requires the use of the stochastic velocity Verlet integra- 
tion scheme. Here, the velocity Verlet stochastic dynamics method is derived, and the reasons 
why it can be joined with Metropolis Monte Carlo in a continuous fashion are explored. 

1. I n t r o d u c t i o n  

Early simulations were used to study equilibrium and t ransport  propert ies of  
structureless systems governed by simple potentials [1]. Today,  simulations are 
used to study complex systems such as protein structure [2] and to compute  free 
energies [3]. Since it is extremely useful to compare  simulation results with experi- 
ment,  there is a great desire and need for algorithms which efficiently sample all 
thermally accessible regions of  configuration space, and generate a canonical 
ensemble [4]. This ensemble may  be generated in a variety of  ways by using the stan- 
dard  Metropol is  algorithm [5], Langevin dynamics [6], isokinetic Gauss ian  thermo- 
stats [7], or Nose  dynamics [8]. Limitations of  the Monte  Carlo method  have led 
to many  at tempts  at generating a better random walk [9]. The recognition that  the 
dynamics  of  Nose  require an ergodic Hamil tonian [10] has led to varying a t tempts  
to extend the method  [11]. It is clear that a great deal of  effort  has been and will con- 
tinue to be expended in the a t tempt  to more  efficiently sample configurat ion space, 
and to generate a canonical ensemble. 

When  simulations are used to s tudy flexible organic molecules, the problems of  
sampling the space and generating a canonical ensemble are magnified because 
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motion in these systems takes place on multiple time scales [12]. Bond lengths and 
bond angles move on a femtosecond to picosecond time scale, while many torsional 
changes occur on a nanosecond time scale. Truly quantitative molecular design 
applications involving flexible molecules requires algorithms capable of sampling 
local wells and capable of crossing the large energy barriers separating these wells 
while yielding the correct population distributions. These considerations led to the 
development of the mixed MC-SD method. In the mixed MC-SD method, stochas- 
tic dynamics in Cartesian space and Metropolis Monte Carlo in torsion space are 
performed in alternating steps. After every dynamical step a random trial torsional 
deformation is performed and accepted or rejected according to the Metropolis cri- 
teria. Regardless of the outcome of the Metropolis test, the next dynamical step is 
done from the current configuration using the velocities from the previous dynami- 
cal step. This is radically different from many of the schemes [9] which utilize dyna- 
mical operations to generate a new trial configuration for a Monte Carlo random 
walk. The mixed MC-SD method actually merges dynamics and Monte Carlo into 
a single unified algorithm which eliminates the distinction between the determinis- 
tic and the stochastic. 

Several examples of the speed and accuracy of the mixed MC-SD method have 
been recently published [13,14]. In the first case [13], several small systems such as 
anharmonic two well potentials and n-pentane were shown to give identical results 
with Metropolis Monte Carlo, stochastic dynamics, and the mixed MC-SD 
method even up to the fourth moment of the energy for n-pentane. Additionally, it 
was demonstrated that the mixed MC-SD method converged 3 orders of magni- 
tude faster than stochastic dynamics in conformational free energy calculations of 
n-pentane. In the second case, it was demonstrated that the mixed MC-SD method 
is essential for computing binding free energies of small host-guest complexes con- 
taining rotatable torsional angles [14]. In this example it was demonstrated that sto- 
chastic dynamics alone was incapable of reproducing quantitative experimental 
binding free energies, and that the mixed MC-SD scheme was capable of reprodu- 
cing quantitative binding free energies. In fact, the mixed MC-SD algorithm was 
used to quantitatively design a new synthetic molecular peptide host [14]. 

The need to use velocity Verlet stochastic dynamics in the mixed MC-SD 
method was alluded to in the original paper [13]. The reasons why this integration 
scheme is needed will be demonstrated, and the velocity Verlet stochastic dynamics 
algorithm is derived. It should be noted that only a simple, classical Metropolis 
Monte Carlo scheme has been used in the mixed MC-SD method. The mixed M C -  
SD algorithm should be totally compatible with any of the more sophisticated 
Monte Carlo schemes cited in ref. [9]. 

2. The velocity Verlet stochastic dynamics  a lgor i thm 

The stochastic equation of motion is 
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m d v / d t  = f[x(t)] + R( t )  - rnTv.  (1) 

The mass is m, v is the velocity, x is the position, f is the deterministic force, 
"7 is the friction coefficient, and R is the random force. From the fluctuation- 
dissipation theorem with 6-function memory, the time correlation of the random 
variables is 

<R(t)R(t ' )> = 2 m f k T 6 ( t -  t ' ) .  (2) 

The time is t, k is Boltzmann's constant, T is the temperature, and the pointed 
brackets indicate equilibrium ensemble averaging. 

The first step in solving the stochastic equation of motion is to divide eq. (1) by 
m, add "/v to both sides, and multiply by the integrating factor exp(-'/t). This gives 

d / d t  [exp(Tt)v(t)] = exp(Tt ){ f [x ( t ) ]  + R( t )  } / m .  (3) 

Integrating from to to t ( A t  = t - to), adding V(to) exp(~/t0) to both sides of the equa- 
tion, and multiplying both sides of the equation by exp(-9,t) gives 

o•t• 
t 

v(t) = V(to) exp(-9'At) + exp( -Tt ) /m dt' f[z(t ' )]  exp(Tt') 

f + e x p ( - ~ / t ) / m  dt' R(t ')  exp(,yt'). (4) 

Partial integration of the first integral in eq. (4) neglecting higher order terms 
gives 

ft0 t e x p ( - 9 , t ) / m  d /  f [ x ( / ) ]  exp(9,/) = f[x(t)][1 - e x p ( - T A t ) l / ( m v )  . 

Making this substitution, eq. (4) becomes 

v(t) = V(to) exp(-,),At) + f[x(to)l[1 - exp(-"/At)]/(mT) 

f + e x p ( - v t ) / m  dt' R(t ' )  exp(7/) . (5) 

Given that v = d x / d t ,  integrating eq. (5) from to to t yields the position equation 

x(t)  = x(to) + V(to)[1 -exp(- , , /At)] /~,  + f [x( to)]{~,At  - [ 1 -  exp( -~At) l} /  

f (m-y 2) + 1/(m"/) d~ R(t ' ){1  - e x p [ - 7 ( / -  t)]}. (6) 
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The first three terms on the right hand side ofeq. (6) are obtained from the elemen- 
tary integration of the corresponding terms in eq. (5). The stochastic integral in 
eq. (6) is obtained from partial integration (neglecting higher order terms) of the 
double integral that arises from integrating eq. (5): 

f t j e x p ( - T t ) / m f t f d d ' R ( d ' )  exp(Td') • 

Recalling that t = to + At, and defining R1 (t, to + At) as 

l 
t o + A t  

1/(roT) dt ~ R(t~){1 - exp[-7(t '  - t)]}, 
d l0 

eq. (6) (omitting the subscript on to) may be rewritten as 

x(t + A t )=  x(t) + v(t)[1 - exp(-TAt)] /7  

+f[x(t)]{TAt-[1 -exp(-TAt)]} / (m7 2) + Rl( t , t  + At). (7) 

It should be noted that the integrals of the random force R(t) are stationary, 
Markovian, Gaussian stochastic processes because the random forces themselves 
are stationary, Markovian, Gaussian stochastic processes [15]. Integrating this 
position equation backward in time gives 

x ( t -  At) = x(t) + v(t)[1 - exp(TAt)]/7 

+ f[x( t)]{--TAt-  [1 -exp(TAt)]}/(m7 2) + R l ( t , t -  At). (8) 

Solving eqs. (7) and (8) simultaneously to eliminate v(t) gives 

x(t + A t ) =  x(t)[1 + exp(--TAt)]-  x ( t -  At) exp(--TAt ) 

+f[x(t)]At[1- exp(--TAt)]/(mT)+ R1 (t, t + At) 

+ R1 (t, t - At) exp(-TAt) .  (9) 

Integrating eq. (9) another timestep to t + 2At gives 

x(t + 2At) = x(t + At)[1 + e x p ( - T A t ) ] -  x(t) exp(--TAt ) 

+ f[x(t  + At)]At[1 -exp(-TAt)]/(mT) + Rl( t , t  + 2At) 

+ Rl(t  + At, t) exp(--TAt). (10) 

Since velocity in the velocity Verlet is v(t) = [z(t + At) - z(t - At)]/2At, adding 
eq. (9) and eq. (10) and doing a little rearranging gives 
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v(t + At) = v(t) exp(TAt) 

+ {f[x(t)] +f[x( t  + At)I}[1 - exp(-TAt)l/(2m.7) 

+ [Rl(t , t  + At) + Rl( t  + At, t +2At)] / (2At)  

+ e x p ( - f A t ) [ R l ( t , t - A t ) +  R l ( t +  At, t)]/(2At).  (11) 

The final step in obtaining the velocity Verlet stochastic dynamics equations is 
the treatment of the stochastic forces. Recalling the definition of R1 (t, t + At): 

f 
t+At 

1/(m~,) d{ R(t'){1 - exp[-'y(t' - t)]}, 
at 

the stochastic integral obtained from integrating backward in time, R1 (t + At, t): 

1/(m',/) d/R( t ' ) {1  - e x p [ - ~ , ( / -  t)]}, 
At 

may be redefined as R2(t, t + At): 

f 
t+At 

1/(m'~) d~ R( t ' ) {exp[- ' , / ( / -  t)] - 1}. 
at 

This allows the velocity integration given in eq. (11) to be written so that every 
quantity is moving forward in time: 

v(t + At) = v(t) exp(TAt) 

+ {fix(t)] +f[x ( t  + At)]}[1-  exp(-,TAt)]/(2m,7) 

+ [Rl(t , t  + At) + Rl ( t  + At, t +2At)] / (ZAt)  

+ exp(- ,z t)[R2(t - A t ,  t) + RZ(t ,  t + zat )] / (zzat ) .  (12) 

Equation (7) is the position integration and eq. (12) is the velocity integration. It 
should be noted that this integration scheme is accurate to third order in At. Since 
R1 (t, t + At) and R2(t, t + At) are two different integrals over the same time step, 
they are correlated and obey a bivariate Gaussian distribution 

G(R1, R2) = [47r01 202 2(1 - 012 2 ) ] - 1 / 2  exp{-[01 2R1 + 02 2R2 

- 20102012R1R2]/[201 202 2(1 _ 012 2)]}. 
The parameters 01,02,012 may be determined from the following relations: 

01 2 = (R1R1); 02 2 = (R2R2); 0102012 = (R1R2) ,  

and eq. (2): 

(R(t)R(t~) ) = 2mfkT6( t  - t~) . 

For example, 
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OI 2 .~- ( R 1 R 1 )  

f 
t+.4t 

= (m.y) -2 dr' {1 - exp[--y(t '  - t)]}{1 - exp[ -7( t "  - t)]} 
, / t  

f 
t+At 

x dt" ( R ( f ) g ( t " ) )  
dt  

f 
t+Zlt 

= (m3,) -2 dt' {1 - exp[-7( t '  - t)]}{1 - exp[-7(fl '  - t)]} 
,It 

i 
t+At 

x d / '  2 m ~ k T 6 ( t  - t') 
dt  

i 
t+At 

= 2 k T / ( r n T )  d{  {1 - exp[-7( t '  - t ) ] }  2 
dl  

= k T / ( m 7 2 ) [ 2 7 A t -  3 + 4 exp ( -TAt )  - e x p ( - Z f A t ) ] .  

Solving in a similar manner ,  

02 2 = (R2R2)  = k T / ( m f 2 ) [ - Z T Z l t  + 3 - 4 exp(TAt) + exp(27At)] , 

0102012 = (R1R2)  = kT / (m72)[exp( 'TAt )  - 2.,/At + exp(--TAt)] .  

3. The  mixed  M C - S D  m e t h o d  

The first at tempts [13] at mixing MC with SD utilized the leap frog SD algori thm 
[16]. This worked for one particle in various simple potentials. When an atomic sys- 
tem was tested, the simulation immediately overheated with the extent of  the over- 
heating directly related to the MC acceptance rate. The cause was immediately  
t raced to the discontinuities of  the intramolecular derivatives. Of  course this was 
not  too surprising since the mixed M C - S D  procedure can be viewed as a dynamical  
a lgori thm with repeated and violent r andom changes inflicted upon the configura- 
tion. Since dynamics is a procedure which smoothly and gradually changes the con- 
f iguration in an essentially continuous fashion, the question is: does there exist a 
dynamical  integration scheme which will not  blow up when the configurat ion is 
r andomly  and frequently violently distorted, and will this united product  result in a 
me thod  which actually generates a canonical ensemble? It has not  only been 
demons t ra ted  that  the answer to both of  these questions is yes, but  that  this new 
method  is very powerful when applied to molecular  systems containing rotatable 
torsional degrees of  f reedom [13,14]. 

Natural ly ,  a dynamics that  produces a canonical ensemble was chosen for the 
mixed M C - S D  method.  The random and friction forces are, however,  irrelevant in 
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illustrating why the velocity Verlet can be successfully mixed with Monte Carlo, 
while the Verlet, Beeman, and leap frog cannot. Figure 1 shows the equations for 
how MC can be mixed with Verlet MD, and velocity Verlet MD. 

The integration loop in the mixed MC Verlet MD scheme is: compute forces, 
integrate positions, integrate velocities, attempt and MC step. If the MC step fails, 
continue the dynamics. If the MC step passes, load the new positions into x(t) and 
continue on to the next dynamical step. This is schematically illustrated in fig. 2. 

Fig. 2(A) shows that the position integration to x(t  + At) requires knowledge 
of the position at x(t) and at x(t  - At). Admixing MC into this integration scheme 
by loading an accepted MC step into x(t) is illustrated in fig. 2(B). Clearly, x(t) 
and x(t - At) in this case are not really separated by At. The resulting discontinuity 
leads to overheating. The ordering of the integration loop, as illustrated in 
fig. (1B), is slightly different in the mixed MC velocity Verlet scheme: integrate 
positions, compute forces, integrate velocities, attempt an MC step. Figure 3(A) 
shows that the position integration to x(t + At) only requires knowledge of the 
position at x(t). 

The velocity integration requires knowledge of forces at t and t + At,  not at 
t - At. This is the critical point. As illustrated in fig. 3(B), admixing MC into this 
integration scheme by loading an accepted MC step into x(t) will cause no disconti- 

(A) Verier MD with MC 

C o m p u t e  f = f [x ( t ) ]  

x( t+&t)  = 2x(t)  - x(t-zXt) + m l f ( t ) ~ t  2 

v(t) = [x( t+At)  - x(t-~xt)] / 2At 

Do MC; If Accept - - - >  load new p o s i t i o n  in to  x(t)  

(B) Velocity Verlet MD with MC 

x(t+~xt) = x(t) + v(t)ext +m ' l f ( t )~ t  2 

Compute f = f [x( t ) ]  

v ( t + a t )  = v( t )  + m ' l [ f ( t + ~ t )  + f ( t ) ]A t  ! 2 

Do MC; If Accept . . . .  > l o a d  n e w  p o s i t i o n  i n t o  x( t )  

Fig. 1. Part A shows how Monte Carlo may be mixed with Verlet molecular dynamics. Part B shows 
how Monte Carlo may be mixed with velocity Verlet molecular dynamics. Note the discontinuity 
that is introduced into the Verlet integration by admixing Monte Carlo into the dynamics, and the 

smooth way that Monte Carlo may be introduced into the velocity Verlet integration. 
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SD-MC with the Verlet Algor i thm 

(A) 
At At 
A 

r i i 
x(t-zXt) x(t) x(t+zxt) = f[x(t),x(t-zXt)l 

Presently Here 

Immediate Future Position 

At 

(B) i 
x(t-2At) ) 

Presently Here 

Here? 

| Make an MC Move 
.~? | /  Can be Anywhere! 

Here ~'1 ? i  ] 

Here? / x(t) x(t+At) = f[x(t),x(t-At)] 

Here? ) I l 

Position 
after MC step Immediate Future Position 

Fig. 2. Part A shows the functional dependence of the position integration in Verlet molecular 
dynamics. Note that the new position is a function of the present position and the previous position. 
Part B shows that the admixing of a Monte Carlo step into this scheme will cause discontinuities 
because the present position will no longer really be separated by a differential distance from the prior 

position. 

nui ty in the equat ions  because there is no m e m o r y  of  what  happened  at x(t - At). 
It should  be noted  that  the velocities are unaffected by the results of  the Metropol i s  
test. 

4. I m p l e m e n t i n g  the  m i x e d  M C - S D  a l g o r i t h m  

The implementa t ion  of  the me thod  is s t raightforward,  just  as is i l lustrated in 
fig. (2B). The only real complexi ty is in keeping track of  the correlat ions a m o n g  the 
r a n d o m  variables. To get started, 

I. assign initial coordinates  and velocities, 

II. compute  initial forces, 

III. assignforcesto R l ( t -  At,  t ) ;R l ( t , t  + A t ) ;R l ( t  + At,  t + 2Bt) bysampling 
three t imes f rom a Gaussian of  zero mean  and width 01 setting R1 (t - At, 
t) = sample 1; Rl(t ,  t + At) = sample 2; Rl ( t  + At, t + 2At) = sample  3, 
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SD-MC with the velocity Verier Algorithm 

z~t 

(A) [ .............. 

x(t-At),v(t-zXt) 

At ,,k 

i i 
x(t),v(t) x(t+z~t) = f[x(t)]; v(t+z~t) = f[x(t),x(t+z~t)l 

I J~lmmediate Future Position 
Presently Here 

At 

(a) [ 
x(t-2~t) 

Here? 

'1 ~ Here? 
[~--------------~--'N. ~ Here? 

x(t-At) ~ \ Here? 
I Here? 

Presently Here 

Make an MC Move 
Can be Anywhere! 

At 
>- f,,,, ' "& 

x(t) 

Position 
after MC step 

No Memory of 
] x(t.,~t) 4 

×(t+At) = f[x(t)] 
v(t+at~= f[x(t),x(t+zXt)] 

Immediate Future Position 

Fig. 3. Part A shows the functional dependence of the position and velocity integration in velocity 
Verlet molecular dynamics. Note that the new position is only a function of the present position. The 
new velocity is a function of the present position and the new position. Hence, the forces used to 
update the velocities are always separated by At whether or not a Monte Carlo step is accepted and 
loaded into x(t). Part B shows that the admixing of a Monte Carlo step into this scheme will cause no 

discontinuities because there is no memory the past events. 

IV. assign forces to R2(t-At ,  t); R2(t, t + At) by sampling twice f rom a 
Gauss ian  of  zero mean  and width [i32 2(1 -0122)]  1/2 setting R2(t-  At, t) 
= sample l + R l ( t -  At, t)A/B; R2(t, t +  At) = sample 2 + R l ( t ,  t+ At)A/ 
B, where 

A = exp(TAt) - 2-),At + exp ( - . yAt ) ,  

B = 27At  - 3 + 4 e x p ( - T A t )  - e x p ( - 2 7 A t  ) . 

The  p roduc t ion  phase may  now be started as follows: 

I. compu te  the new posit ions according to eq. (7), 

II. compu te  the new forces, 

III.  compu te  the new velocities according to eq. (12), 
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IV. load Rl( t ,  t + A t )  into R l ( t - A t ,  t); load R l ( t + A t ,  t + 2 A t )  into Rl( t ,  
t + At), 

V. obtain the new R1 (t + At, t + 2At) as described in getting started part  III, 

VI. obtain the new R2(t - At, t), R2(t, t + At) as described in getting started 
part  IV, 

VII. a t tempt  an MC step, if successful load into x(t) as the new coordinates,  

VIII. go back to I. 

5. Conc lu s ion  

It should be clearly stated that  the validity of  the mixed M C - S D  procedure has 
not  been formally demonstrated.  What  has been previously shown is that  the mixed 
M C - S D  technique produces the same distributions as canonical dynamics and 
Monte  Carlo in a variety of  test systems, and that the convergence of  the mixed 
M C - S D  technique was superior in all cases tested [13,14]. The method  has been 
probed in more  detail to investigate stability. In a variety of  simulations the tem- 
perature always converged to within 2 degrees of  the target temperature  regardless 
of  the MC acceptance rate (up to 50%), and gave the same potential distributions 
as M C  and SD alone. These results are only obtained when MC is mixed with the 
velocity Verlet stochastic dynamics method.  Mixing other integration schemes 
with M C  resulted in immediate overheating which increased as the MC acceptance 
rate increased. The smooth,  seamless merging of  MC and SD that  occurs when 
the velocity Verlet integration scheme is used, results in a very powerful a lgori thm 
for generating a canonical ensemble in flexible molecular  systems. Alternatively, 
this method  may  have important  theoretical implications because it eliminates all 
distinction between the stochastic and the dynamic.  
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